HHWT is an 8-digit numeric variable with 2 implied decimal places. See the variable description.
Explore how IPUMS created this variable
Most IPUMS data transformations are performed using variable harmonization tables that specify how each value in the source data is recoded. Some variables also require programming logic in addition to the harmonization table. The harmonization documents for this variable are:
- Harmonization table
- Supplemental programming
- Instructions for interpreting harmonization documents
class Hhwt : public Editor {
public:
Hhwt(VarPointer varInfo) : Editor(varInfo) {}
void edit() {
long a = getRecoded();
switch (dataSet) {
case dataset_id::br1970a:
a = BR1970A_0432(1) * 10000;
break;
case dataset_id::br1980a:
a = BR1980A_0029(0) * 10000;
break;
case dataset_id::br1991a: {
long long l = BR1991A_0048(0);
long long w = l;
l = l / 10000;
if (w % 10000 > 5000)
l++;
a = l;
} break;
case dataset_id::br2000a: {
long long l = BR2000A_0077(0);
long long w = l;
l = l / 10000;
if (w % 10000 > 5000)
l++;
a = l;
} break;
case dataset_id::co1985a:
a = CO1985A_0027(0) * 10000;
break;
case dataset_id::ec1974a:
a = EC1974A_0033() * 140;
break;
case dataset_id::mx2000a:
a = MX2000A_0006(0) * 10000;
break;
case dataset_id::ph1990a:
a = PH1990A_0055(0) * 10000;
break;
case dataset_id::ph2000a:
a = PH2000A_0063(0) * 10000;
break;
case dataset_id::ug1991a:
a = UG1991A_0076(0) * 10000;
break;
case dataset_id::ve1990a:
a = VE1990A_0047(0) * 30000;
break;
case dataset_id::za1996a:
a = ZA1996A_0048(0) * 10;
break;
case dataset_id::za2001a:
a = (long long)(ZA2001A_0043(0) * 0.01);
break;
case dataset_id::dk1845a:
case dataset_id::dk1880a:
case dataset_id::dk1885a:
case dataset_id::ie1901a:
case dataset_id::ie1911a:
a = 10000;
break;
case dataset_id::br1960a:
a = 50000;
break;
case dataset_id::py1962a:
case dataset_id::pt2011a:
a = 200000;
break;
case dataset_id::pr1970a:
case dataset_id::cn1982a:
case dataset_id::cn2000a:
case dataset_id::hn1961a:
a = 1000000;
break;
case dataset_id::my1980a:
a = 600000;
break;
case dataset_id::ar1970a:
case dataset_id::co1964a:
case dataset_id::ca1981a:
case dataset_id::my1970a:
case dataset_id::my1991a:
case dataset_id::my2000a:
a = 500000;
break;
case dataset_id::ht1982a:
a = 400000;
break;
case dataset_id::am2001a:
case dataset_id::am2011a:
case dataset_id::ar2001a:
case dataset_id::ar2010a:
case dataset_id::at1971a:
case dataset_id::at1981a:
case dataset_id::at1991a:
case dataset_id::at2001a:
case dataset_id::at2011a:
case dataset_id::bd1991a:
case dataset_id::bd2001a:
case dataset_id::bf1985a:
case dataset_id::bf1996a:
case dataset_id::bf2006a:
case dataset_id::bj1979a:
case dataset_id::bj1992a:
case dataset_id::bj2002a:
case dataset_id::bj2013a:
case dataset_id::bo1976a:
case dataset_id::bo1992a:
case dataset_id::bo2001a:
case dataset_id::bw1981a:
case dataset_id::bw1991a:
case dataset_id::bw2001a:
case dataset_id::bw2011a:
case dataset_id::by1999a:
case dataset_id::by2009a:
case dataset_id::ci1998a:
case dataset_id::cl1970a:
case dataset_id::cl1982a:
case dataset_id::cl1992a:
case dataset_id::cl2002a:
case dataset_id::cl2017a:
case dataset_id::cm1976a:
case dataset_id::cm1987a:
case dataset_id::cm2005a:
case dataset_id::co1973a:
case dataset_id::co1993a:
case dataset_id::cr1973a:
case dataset_id::cr1984a:
case dataset_id::cr2000a:
case dataset_id::cr2011a:
case dataset_id::cu2002a:
case dataset_id::cu2012a:
case dataset_id::do2002a:
case dataset_id::do2010a:
case dataset_id::ec1982a:
case dataset_id::ec1990a:
case dataset_id::ec2001a:
case dataset_id::ec2010a:
case dataset_id::eg2006a:
case dataset_id::et1984a:
case dataset_id::fj1966a:
case dataset_id::fj1976a:
case dataset_id::fj1986a:
case dataset_id::fj1996a:
case dataset_id::fj2007a:
case dataset_id::fj2014a:
case dataset_id::gh1984a:
case dataset_id::gh2000a:
case dataset_id::gh2010a:
case dataset_id::gn1983a:
case dataset_id::gn1996a:
case dataset_id::gn2014a:
case dataset_id::gr1971a:
case dataset_id::gr1981a:
case dataset_id::gr1991a:
case dataset_id::gr2001a:
case dataset_id::gr2011a:
case dataset_id::gt1994a:
case dataset_id::gt2002a:
case dataset_id::hn1974a:
case dataset_id::hn1988a:
case dataset_id::hn2001a:
case dataset_id::ht1971a:
case dataset_id::ht2003a:
case dataset_id::id2000a:
case dataset_id::id2010a:
case dataset_id::ie1971a:
case dataset_id::ie1979a:
case dataset_id::ie1981a:
case dataset_id::ie1986a:
case dataset_id::ie1991a:
case dataset_id::ie1996a:
case dataset_id::ie2002a:
case dataset_id::ie2006a:
case dataset_id::ie2011a:
case dataset_id::ie2016a:
case dataset_id::il1972a:
case dataset_id::il1983a:
case dataset_id::il1995a:
case dataset_id::iq1997a:
case dataset_id::jm1982a:
case dataset_id::jm1991a:
case dataset_id::jo2004a:
case dataset_id::ke2009a:
case dataset_id::kg1999a:
case dataset_id::kg2009a:
case dataset_id::kh1998a:
case dataset_id::kh2008a:
case dataset_id::kh2019a:
case dataset_id::la1995a:
case dataset_id::la2005a:
case dataset_id::la2015a:
case dataset_id::lc1980a:
case dataset_id::lc1991a:
case dataset_id::lr1974a:
case dataset_id::lr2008a:
case dataset_id::ls1996a:
case dataset_id::ls2006a:
case dataset_id::ma2014a:
case dataset_id::ml1987a:
case dataset_id::ml1998a:
case dataset_id::ml2009a:
case dataset_id::mn2000a:
case dataset_id::mu1990a:
case dataset_id::mu2000a:
case dataset_id::mu2011a:
case dataset_id::mw1987a:
case dataset_id::mw1998a:
case dataset_id::mw2008a:
case dataset_id::mx1990a:
case dataset_id::mx2005a:
case dataset_id::mz2007a:
case dataset_id::ni1971a:
case dataset_id::ni1995a:
case dataset_id::ni2005a:
case dataset_id::pa1970a:
case dataset_id::pa1980a:
case dataset_id::pa1990a:
case dataset_id::pa2000a:
case dataset_id::pa2010a:
case dataset_id::pe1993a:
case dataset_id::pe2007a:
case dataset_id::pg1980a:
case dataset_id::pg1990a:
case dataset_id::pg2000a:
case dataset_id::pg2011a:
case dataset_id::ph1995a:
case dataset_id::pk1998a:
case dataset_id::pl1978a:
case dataset_id::pl1988a:
case dataset_id::pl2002a:
case dataset_id::pl2011a:
case dataset_id::py1972a:
case dataset_id::py1982a:
case dataset_id::py1992a:
case dataset_id::ro1977a:
case dataset_id::ro1992a:
case dataset_id::ro2002a:
case dataset_id::ro2011a:
case dataset_id::rw1991a:
case dataset_id::rw2002a:
case dataset_id::rw2012a:
case dataset_id::si2002a:
case dataset_id::sl2004a:
case dataset_id::sl2015a:
case dataset_id::sn1988a:
case dataset_id::sn2002a:
case dataset_id::sr2004a:
case dataset_id::sr2012a:
case dataset_id::sv1992a:
case dataset_id::sv2007a:
case dataset_id::tg1960a:
case dataset_id::tt1980a:
case dataset_id::tt1990a:
case dataset_id::tt2000a:
case dataset_id::ua2001a:
case dataset_id::ug2002a:
case dataset_id::ug2014a:
case dataset_id::uy1963a:
case dataset_id::uy1975a:
case dataset_id::uy1985a:
case dataset_id::uy1996a:
case dataset_id::uy2011a:
case dataset_id::ve1971a:
case dataset_id::ve1981a:
case dataset_id::ve2001a:
case dataset_id::zm1990a:
case dataset_id::zm2000a:
case dataset_id::zm2010a:
a = 100000;
break;
case dataset_id::tt2011a:
a = 114000;
break;
case dataset_id::tt1970a:
a = 134000;
break;
case dataset_id::gt1973a:
a = 180000;
break;
case dataset_id::fr1962a:
case dataset_id::fr1968a:
case dataset_id::fr1975a:
case dataset_id::fr1982a:
case dataset_id::ke1989a:
case dataset_id::ke1999a:
case dataset_id::hu1970a:
case dataset_id::hu1980a:
case dataset_id::hu1990a:
case dataset_id::hu2001a:
case dataset_id::pt1981a:
case dataset_id::pt1991a:
case dataset_id::pt2001a:
case dataset_id::es2001a:
case dataset_id::fr1999a:
case dataset_id::pr1980a:
case dataset_id::ch1970a:
case dataset_id::ch1980a:
case dataset_id::ch1990a:
case dataset_id::ch2000a:
case dataset_id::it2001a:
case dataset_id::ma1982a:
case dataset_id::ma1994a:
case dataset_id::ma2004a:
case dataset_id::tr1985a:
case dataset_id::tr1990a:
case dataset_id::tr2000a:
case dataset_id::bd2011a:
case dataset_id::de1970a:
case dataset_id::de1987a:
case dataset_id::hu2011a:
case dataset_id::it2011a:
case dataset_id::zw2012a:
case dataset_id::gt1964a:
case dataset_id::gt1981a:
case dataset_id::ru2002a:
case dataset_id::ru2010a:
case dataset_id::fi2010a:
a = 200000;
break;
case dataset_id::fr1990a:
a = 240000;
break;
case dataset_id::mx1960a:
a = 670000;
break;
case dataset_id::mx1970a:
case dataset_id::ca1971a:
case dataset_id::cn1990a:
case dataset_id::uk1961a:
case dataset_id::uk1971a:
case dataset_id::uk1991a:
case dataset_id::tg1970a:
a = 1000000;
break;
case dataset_id::cl1960a:
a = 830000;
break;
case dataset_id::es1981a:
a = ES1981A_0432(1);
break;
case dataset_id::us1960a:
a = US1960A_0006(0) * 10000;
break;
case dataset_id::us1970a:
a = US1970A_0006(0) * 10000;
break;
case dataset_id::us1980a:
a = US1980A_0006(0) * 10000;
break;
case dataset_id::us1990a:
a = US1990A_0006(0) * 10000;
break;
case dataset_id::us2000a:
a = US2000A_0006(0) * 10000;
break;
case dataset_id::us2005a:
a = US2005A_0141(0) * 10000;
break;
case dataset_id::us2010a:
a = US2010A_0020(0) * 10000;
break;
case dataset_id::cr1963a:
a = 170000;
break;
case dataset_id::ec1962a:
a = 330000;
break;
case dataset_id::ps1997a: {
long long l = PS1997A_0428(1) * 2;
long long w = l;
l = l / 100;
if (w % 100 > 50)
l++;
a = l;
} break;
case dataset_id::ar1980a:
a = AR1980A_0052(0) * 20000;
break;
case dataset_id::ar1991a:
a = AR1991A_0048(0) * 10000;
break;
case dataset_id::de1971a:
case dataset_id::de1981a:
a = 40000;
break;
case dataset_id::ca1991a:
case dataset_id::uk2001a:
a = 333333;
break;
case dataset_id::mx1995a:
a = MX1995A_0027(0) * 10000;
break;
case dataset_id::pa1960a:
a = 200000;
break;
case dataset_id::ca2001a:
a = (long long)(CA2001A_0525(1) * 0.01);
break;
case dataset_id::co2005a:
a = (long long)(CO2005A_0127(0) * 1.0e-06);
break;
case dataset_id::eg1996a:
a = (long long)(EG1996A_0093(0) * 0.1);
break;
case dataset_id::nl1960a:
a = (long long)(NL1960A_0410(1) * 1.0e-08);
break;
case dataset_id::nl1971a:
a = (long long)(NL1971A_0412(1) * 1.0e-08);
break;
case dataset_id::nl2001a:
a = (long long)(NL2001A_0412(1) * 0.01);
break;
case dataset_id::in1983a:
a = IN1983A_0069(0) * 10000;
break;
case dataset_id::in1987a:
a = IN1987A_0077(0) * 10000;
break;
case dataset_id::in1993a:
a = IN1993A_0090(0) * 100;
break;
case dataset_id::in1999a:
a = (long long)(IN1999A_0034(0) / 8 * 100);
break;
case dataset_id::in2004a: {
if (IN2004A_0051(0) == IN2004A_0052(0))
a = IN2004A_0053(0);
if (IN2004A_0051(0) != IN2004A_0052(0))
a = IN2004A_0053(0) / 2;
a = a * 100;
} break;
case dataset_id::in2009a: {
if (IN2009A_0052(0) == IN2009A_0053(0))
a = IN2009A_0054(0);
if (IN2009A_0052(0) != IN2009A_0053(0))
a = IN2009A_0054(0) / 2;
a = a * 100;
} break;
case dataset_id::mn1989a:
a = MN1989A_0063(0) * 10;
break;
case dataset_id::za2007a: {
if (ZA2007A_0067(0) == 0)
a = 0;
a = a * 0.01;
} break;
case dataset_id::pk1973a:
a = PK1973A_0026(0) * 10000;
break;
case dataset_id::pk1981a:
a = PK1981A_0409(1) * 38000;
break;
case dataset_id::pr1990a:
a = PR1990A_0042(0) * 10000;
break;
case dataset_id::pr2000a:
a = PR2000A_0021(0) * 10000;
break;
case dataset_id::pr2005a:
a = PR2005A_0021(0) * 10000;
break;
case dataset_id::tz1988a:
a = (long long)(TZ1988A_0426(1) * 2.0e-07);
break;
case dataset_id::tz2002a:
a = TZ2002A_0051(0) * 10;
break;
case dataset_id::th1970a:
a = (long long)(TH1970A_0446(1) * 0.0001);
break;
case dataset_id::th1990a:
a = TH1990A_0086(0) * 100;
break;
case dataset_id::fr2006a:
a = (long long)(FR2006A_0427(1) * 1.0e-08);
break;
case dataset_id::fr2011a:
a = (long long)(FR2011A_0426(1) * 1.0e-10);
break;
case dataset_id::ir2006a:
a = (long long)(IR2006A_0094() * 5.0e-09);
break;
case dataset_id::jm2001a:
a = JM2001A_0523(1) * 100;
break;
case dataset_id::ps2007a:
a = (long long)(PS2007A_0430(1) * 2.0e-07);
break;
case dataset_id::vn2009a:
a = (long long)(VN2009A_0055() * 1.0e-08);
break;
case dataset_id::sd2008a:
a = SD2008A_0188(0);
break;
case dataset_id::id1971a:
a = ID1971A_0047(0) * 10000;
break;
case dataset_id::id1976a:
a = ID1976A_0066(0) * 10000;
break;
case dataset_id::id1980a:
a = ID1980A_0064(0) * 10000;
break;
case dataset_id::id1985a:
a = ID1985A_0050(0) * 10000;
break;
case dataset_id::id1990a:
a = ID1990A_0055(0) * 10000;
break;
case dataset_id::id1995a:
a = ID1995A_0056(0) * 10000;
break;
case dataset_id::id2005a:
a = ID2005A_0502(1) * 10000;
break;
case dataset_id::mx2010a:
a = MX2010A_0069(0) * 10000;
break;
case dataset_id::uy2006a:
a = UY2006A_0185(0) * 10000;
break;
case dataset_id::et1994a:
a = ET1994A_0043(0) * 10000;
break;
case dataset_id::mz1997a:
a = MZ1997A_0050(0) * 10000;
break;
case dataset_id::py2002a:
a = PY2002A_0083(0) * 10000;
break;
case dataset_id::br2010a:
a = (long long)(BR2010A_0027(0) * 1.00e-06);
break;
case dataset_id::ke1979a:
a = (long long)(KE1979A_0422(1) * 0.1);
break;
case dataset_id::ke1969a:
a = KE1969A_0429(1) * 100;
break;
case dataset_id::do1981a:
a = DO1981A_0021(0) * 10000;
break;
case dataset_id::do1970a:
a = DO1970A_0427(1) * 10000;
break;
case dataset_id::do1960a:
a = DO1960A_0026(0) * 100;
break;
case dataset_id::ng2006a:
a = NG2006A_0066(0) * 100;
break;
case dataset_id::ng2007a:
a = NG2007A_0046(0) * 100;
break;
case dataset_id::ng2008a:
a = NG2008A_0059(0);
break;
case dataset_id::ng2009a:
a = NG2009A_0507(1) * 100;
break;
case dataset_id::ng2010a:
a = NG2010A_0529(1) * 10000;
break;
case dataset_id::pr2010a:
a = PR2010A_0210(0) * 100;
break;
case dataset_id::et2007a:
a = (long long)(ET2007A_0067() * 0.1);
break;
case dataset_id::za2011a:
a = (long long)(ZA2011A_0076() * 1.0e-05);
break;
case dataset_id::es2011a:
a = (long long)(ES2011A_0025() * 1.0e-06);
break;
case dataset_id::mx2015a:
a = MX2015A_0030(0) * 10000;
break;
case dataset_id::ir2011a:
a = IR2011A_0457(1);
break;
case dataset_id::ca2011a:
a = (long long)(CA2011A_0442(1) * 1.0e-06);
break;
case dataset_id::tz2012a:
a = TZ2012A_0095() * 27.5;
break;
case dataset_id::eg1986a:
a = (long long)(EG1986A_0071() * 1.0e-05);
break;
case dataset_id::nl2011a:
a = (long long)(NL2011A_0412(1) * 1.0e-06);
break;
case dataset_id::ph2010a:
a = (long long)(PH2010A_0074() * 2.0e-05);
break;
case dataset_id::kh2004a:
a = (long long)(KH2004A_0027() * 1.00e-06);
break;
case dataset_id::kh2013a:
a = (long long)(KH2013A_0032() * 0.1);
break;
case dataset_id::np2001a:
a = NP2001A_0050();
break;
case dataset_id::np2011a:
a = 81000;
break;
case dataset_id::tg2010a:
a = TG2010A_0103() * 10;
break;
case dataset_id::es2005h:
case dataset_id::es2005i:
case dataset_id::es2005j:
case dataset_id::es2005k:
case dataset_id::es2006h:
case dataset_id::es2006i:
case dataset_id::es2006j:
case dataset_id::es2006k:
case dataset_id::es2007h:
case dataset_id::es2007i:
case dataset_id::es2007j:
case dataset_id::es2007k:
case dataset_id::es2008h:
case dataset_id::es2008i:
case dataset_id::es2008j:
case dataset_id::es2008k:
case dataset_id::es2009h:
case dataset_id::es2009i:
case dataset_id::es2009j:
case dataset_id::es2009k:
case dataset_id::es2010h:
case dataset_id::es2010i:
case dataset_id::es2010j:
case dataset_id::es2010k:
case dataset_id::es2011h:
case dataset_id::es2011i:
case dataset_id::es2011j:
case dataset_id::es2011k:
case dataset_id::es2012h:
case dataset_id::es2012i:
case dataset_id::es2012j:
case dataset_id::es2012k:
case dataset_id::es2013h:
case dataset_id::es2013i:
case dataset_id::es2013j:
case dataset_id::es2013k:
case dataset_id::es2014h:
case dataset_id::es2014i:
case dataset_id::es2014j:
case dataset_id::es2014k:
case dataset_id::es2015h:
case dataset_id::es2015i:
case dataset_id::es2015j:
case dataset_id::es2015k:
case dataset_id::es2016h:
case dataset_id::es2016i:
case dataset_id::es2016j:
case dataset_id::es2016k:
case dataset_id::es2017h:
case dataset_id::es2017i:
case dataset_id::es2017j:
case dataset_id::es2017k:
case dataset_id::es2018h:
case dataset_id::es2018i:
case dataset_id::es2018j:
case dataset_id::es2018k:
case dataset_id::es2019h:
case dataset_id::es2019i:
case dataset_id::es2019j:
case dataset_id::es2019k:
case dataset_id::es2020h:
case dataset_id::es2020i:
case dataset_id::es2020j:
case dataset_id::es2020k: {
if (countPeople() > 0) {
RecordPointer firstPerson = people().front();
long factorw = valueFromFirstAvailable(
firstPerson, {ES2005H_0488_ref, ES2005I_0488_ref, ES2005J_0488_ref,
ES2005K_0488_ref, ES2006H_0488_ref, ES2006I_0488_ref,
ES2006J_0488_ref, ES2006K_0488_ref, ES2007H_0488_ref,
ES2007I_0488_ref, ES2007J_0488_ref, ES2007K_0488_ref,
ES2008H_0488_ref, ES2008I_0488_ref, ES2008J_0488_ref,
ES2008K_0488_ref, ES2009H_0488_ref, ES2009I_0488_ref,
ES2009J_0488_ref, ES2009K_0488_ref, ES2010H_0488_ref,
ES2010I_0488_ref, ES2010J_0488_ref, ES2010K_0488_ref,
ES2011H_0488_ref, ES2011I_0488_ref, ES2011J_0488_ref,
ES2011K_0488_ref, ES2012H_0488_ref, ES2012I_0488_ref,
ES2012J_0488_ref, ES2012K_0488_ref, ES2013H_0488_ref,
ES2013I_0488_ref, ES2013J_0488_ref, ES2013K_0488_ref,
ES2014H_0488_ref, ES2014I_0488_ref, ES2014J_0488_ref,
ES2014K_0488_ref, ES2015H_0488_ref, ES2015I_0488_ref,
ES2015J_0488_ref, ES2015K_0488_ref, ES2016H_0488_ref,
ES2016I_0488_ref, ES2016J_0488_ref, ES2016K_0488_ref,
ES2017H_0488_ref, ES2017I_0488_ref, ES2017J_0488_ref,
ES2017K_0488_ref, ES2018H_0488_ref, ES2018I_0488_ref,
ES2018J_0488_ref, ES2018K_0488_ref, ES2019H_0488_ref,
ES2019I_0488_ref, ES2019J_0488_ref, ES2019K_0488_ref,
ES2020H_0488_ref, ES2020I_0488_ref, ES2020J_0488_ref,
ES2020K_0488_ref});
{ a = factorw * 100; }
}
} break;
case dataset_id::it2011h:
case dataset_id::it2012h:
case dataset_id::it2013h: {
if (countPeople() > 0) {
RecordPointer firstPerson = people().front();
long factorw = valueFromFirstAvailable(
firstPerson,
{IT2011H_0739_ref, IT2012H_0739_ref, IT2013H_0739_ref});
{ a = factorw * 1000; }
}
} break;
case dataset_id::it2014h:
case dataset_id::it2015h:
case dataset_id::it2016h:
case dataset_id::it2017h:
case dataset_id::it2018h:
case dataset_id::it2019h:
case dataset_id::it2020h: {
if (countPeople() > 0) {
RecordPointer firstPerson = people().front();
long factorw = valueFromFirstAvailable(
firstPerson, {IT2014H_0766_ref, IT2015H_0766_ref, IT2016H_0766_ref,
IT2017H_0766_ref, IT2018H_0766_ref, IT2019H_0766_ref,
IT2020H_0766_ref});
{ a = factorw * 1000; }
}
} break;
case dataset_id::bo2012a:
a = (long long)(BO2012A_0070(0) * 0.00001);
break;
case dataset_id::il2008a:
a = (long long)(IL2008A_0470(1) * 10);
break;
case dataset_id::mm2014a:
a = (long long)(MM2014A_0054(0));
break;
case dataset_id::ps2017a:
a = (long long)(PS2017A_0026(0) * 0.00000002);
break;
case dataset_id::sn2013a:
a = (long long)(SN2013A_0097(0) * 0.0001);
break;
case dataset_id::za2016a:
a = (long long)(ZA2016A_0158(0) * 0.00001);
break;
case dataset_id::eg1848a:
a = (long long)(EG1848A_0445(1) * 0.1);
break;
case dataset_id::eg1868a:
a = (long long)(EG1868A_0445(1) * 0.1);
break;
case dataset_id::sk1991a:
a = (long long)(SK1991A_0415(1) * 0.00001);
break;
case dataset_id::sk2001a:
a = (long long)(SK2001A_0417(1) * 0.00001);
break;
case dataset_id::sk2011a:
a = (long long)(SK2011A_0417(1) * 0.00001);
break;
case dataset_id::mx2020a:
a = MX2020A_0027(0) * 10000;
break;
case dataset_id::pe2017a:
a = PE2017A_0078(0) * 0.01;
break;
case dataset_id::ch2011a:
a = CH2011A_0083(0);
break;
case dataset_id::vn2019a:
a = VN2019A_0064(0) * 0.001;
break;
case dataset_id::pr2015a:
a = PR2015A_0126(0) * 100;
break;
case dataset_id::pr2020a:
a = PR2020A_0120(0) * 100;
break;
case dataset_id::us2015a:
a = US2015A_0127(0) * 10000;
break;
case dataset_id::us2020a:
a = US2020A_0123(0) * 100;
break;
case dataset_id::ci1988a:
a = CI1988A_0064(0) * 0.1;
break;
case dataset_id::mx2005h:
case dataset_id::mx2005i:
case dataset_id::mx2005j:
case dataset_id::mx2005k:
case dataset_id::mx2006h:
case dataset_id::mx2006i:
case dataset_id::mx2006j:
case dataset_id::mx2006k:
case dataset_id::mx2007h:
case dataset_id::mx2007i:
case dataset_id::mx2007j:
case dataset_id::mx2007k:
case dataset_id::mx2008h:
case dataset_id::mx2008i:
case dataset_id::mx2008j:
case dataset_id::mx2008k:
case dataset_id::mx2009h:
case dataset_id::mx2009i:
case dataset_id::mx2009j:
case dataset_id::mx2009k:
case dataset_id::mx2010h:
case dataset_id::mx2010i:
case dataset_id::mx2010j:
case dataset_id::mx2010k:
case dataset_id::mx2011h:
case dataset_id::mx2011i:
case dataset_id::mx2011j:
case dataset_id::mx2011k:
case dataset_id::mx2012h:
case dataset_id::mx2012i:
case dataset_id::mx2012j:
case dataset_id::mx2012k:
case dataset_id::mx2013h:
case dataset_id::mx2013i:
case dataset_id::mx2013j:
case dataset_id::mx2013k:
case dataset_id::mx2014h:
case dataset_id::mx2014i:
case dataset_id::mx2014j:
case dataset_id::mx2014k:
case dataset_id::mx2015h:
case dataset_id::mx2015i:
case dataset_id::mx2015j:
case dataset_id::mx2015k:
case dataset_id::mx2016h:
case dataset_id::mx2016i:
case dataset_id::mx2016j:
case dataset_id::mx2016k:
case dataset_id::mx2017h:
case dataset_id::mx2017i:
case dataset_id::mx2017j:
case dataset_id::mx2017k:
case dataset_id::mx2018h:
case dataset_id::mx2018i:
case dataset_id::mx2018j:
case dataset_id::mx2018k:
case dataset_id::mx2019h:
case dataset_id::mx2019i:
case dataset_id::mx2019j:
case dataset_id::mx2019k:
case dataset_id::mx2020h:
case dataset_id::mx2020j: {
long factmx = valueFromFirstAvailable(
{MX2005H_0040_ref, MX2005I_0040_ref, MX2005J_0040_ref,
MX2005K_0040_ref, MX2006H_0040_ref, MX2006I_0040_ref,
MX2006J_0040_ref, MX2006K_0040_ref, MX2007H_0040_ref,
MX2007I_0040_ref, MX2007J_0040_ref, MX2007K_0040_ref,
MX2008H_0040_ref, MX2008I_0040_ref, MX2008J_0040_ref,
MX2008K_0040_ref, MX2009H_0040_ref, MX2009I_0040_ref,
MX2009J_0040_ref, MX2009K_0040_ref, MX2010H_0040_ref,
MX2010I_0040_ref, MX2010J_0040_ref, MX2010K_0040_ref,
MX2011H_0040_ref, MX2011I_0040_ref, MX2011J_0040_ref,
MX2011K_0040_ref, MX2012H_0040_ref, MX2012I_0040_ref,
MX2012J_0040_ref, MX2012K_0040_ref, MX2013H_0040_ref,
MX2013I_0040_ref, MX2013J_0040_ref, MX2013K_0040_ref,
MX2014H_0040_ref, MX2014I_0040_ref, MX2014J_0040_ref,
MX2014K_0040_ref, MX2015H_0040_ref, MX2015I_0040_ref,
MX2015J_0040_ref, MX2015K_0040_ref, MX2016H_0040_ref,
MX2016I_0040_ref, MX2016J_0040_ref, MX2016K_0040_ref,
MX2017H_0040_ref, MX2017I_0040_ref, MX2017J_0040_ref,
MX2017K_0040_ref, MX2018H_0040_ref, MX2018I_0040_ref,
MX2018J_0040_ref, MX2018K_0040_ref, MX2019H_0040_ref,
MX2019I_0040_ref, MX2019J_0040_ref, MX2019K_0040_ref,
MX2020H_0040_ref, MX2020J_0043_ref});
{ a = factmx * 10000; }
} break;
case dataset_id::ca1852a:
a = a * 100;
break;
case dataset_id::ca1871a:
a = (int)((CA1871A_0012(0) / 100.0) + 0.5);
a = a * 100;
break;
case dataset_id::ca1881a:
a = a * 100;
break;
case dataset_id::ca1891a:
a = a * 100;
break;
case dataset_id::ca1901a:
a = a * 100;
break;
case dataset_id::ca1911a:
a = a * 100;
break;
case dataset_id::de1819a:
a = a * 100;
break;
case dataset_id::dk1787a:
a = a * 100;
break;
case dataset_id::dk1801a:
a = a * 100;
break;
case dataset_id::is1703a:
a = a * 100;
break;
case dataset_id::is1729a:
a = a * 100;
break;
case dataset_id::is1801a:
a = a * 100;
break;
case dataset_id::is1901a:
a = a * 100;
break;
case dataset_id::is1910a:
a = a * 100;
break;
case dataset_id::no1801a:
a = a * 100;
break;
case dataset_id::no1865a:
a = a * 100;
break;
case dataset_id::no1875a: {
if (countPeople() > 0) {
RecordPointer person_rec = people().front();
auto source_data = getSourceData(person_rec);
a = applyTransTable(source_data);
} else
a = 0;
a = a * 100;
} break;
case dataset_id::no1900a:
a = a * 100;
break;
case dataset_id::no1910a:
a = a * 100;
break;
case dataset_id::se1880a:
a = a * 100;
break;
case dataset_id::se1890a:
a = a * 100;
break;
case dataset_id::se1900a:
a = a * 100;
break;
case dataset_id::se1910a:
a = a * 100;
break;
case dataset_id::uk1851a:
a = a * 100;
break;
case dataset_id::uk1851b:
a = a * 100;
break;
case dataset_id::uk1851c:
a = a * 100;
break;
case dataset_id::uk1861a:
a = a * 100;
break;
case dataset_id::uk1861b:
a = a * 100;
break;
case dataset_id::uk1871b:
a = a * 100;
break;
case dataset_id::uk1881a:
a = a * 100;
break;
case dataset_id::uk1881b:
a = a * 100;
break;
case dataset_id::uk1891a:
a = a * 100;
break;
case dataset_id::uk1891b:
a = a * 100;
break;
case dataset_id::uk1901a:
a = a * 100;
break;
case dataset_id::uk1901b:
a = a * 100;
break;
case dataset_id::uk1911a:
a = a * 100;
break;
case dataset_id::us1850a:
a = a * 100;
break;
case dataset_id::us1850b:
a = a * 100;
break;
case dataset_id::us1860a:
a = a * 100;
break;
case dataset_id::us1870a:
a = a * 100;
break;
case dataset_id::us1880a:
a = a * 100;
break;
case dataset_id::us1880b:
a = a * 100;
break;
case dataset_id::us1900a:
a = a * 100;
break;
case dataset_id::us1910a:
a = a * 100;
break;
}
if (!(dataSet == dataset_id::ca1852a || dataSet == dataset_id::ca1871a ||
dataSet == dataset_id::ca1881a || dataSet == dataset_id::ca1891a ||
dataSet == dataset_id::ca1901a || dataSet == dataset_id::ca1911a ||
dataSet == dataset_id::de1819a || dataSet == dataset_id::dk1787a ||
dataSet == dataset_id::dk1801a || dataSet == dataset_id::is1703a ||
dataSet == dataset_id::is1729a || dataSet == dataset_id::is1801a ||
dataSet == dataset_id::is1901a || dataSet == dataset_id::is1910a ||
dataSet == dataset_id::no1801a || dataSet == dataset_id::no1865a ||
dataSet == dataset_id::no1875a || dataSet == dataset_id::no1900a ||
dataSet == dataset_id::no1910a || dataSet == dataset_id::se1880a ||
dataSet == dataset_id::se1890a || dataSet == dataset_id::se1900a ||
dataSet == dataset_id::se1910a || dataSet == dataset_id::uk1851a ||
dataSet == dataset_id::uk1851b || dataSet == dataset_id::uk1851c ||
dataSet == dataset_id::uk1861a || dataSet == dataset_id::uk1861b ||
dataSet == dataset_id::uk1871b || dataSet == dataset_id::uk1881a ||
dataSet == dataset_id::uk1881b || dataSet == dataset_id::uk1891a ||
dataSet == dataset_id::uk1891b || dataSet == dataset_id::uk1901a ||
dataSet == dataset_id::uk1901b || dataSet == dataset_id::uk1911a ||
dataSet == dataset_id::us1850a || dataSet == dataset_id::us1850b ||
dataSet == dataset_id::us1860a || dataSet == dataset_id::us1870a ||
dataSet == dataset_id::us1880a || dataSet == dataset_id::us1880b ||
dataSet == dataset_id::us1900a || dataSet == dataset_id::us1910a)) {
a = (long long)(a * 0.01 + 0.55);
}
if (GQ(0) == 29)
a = 0;
setData(a);
}
};
Description
HHWT indicates the number of households in the population represented by the household in the sample.
For the samples that are truly weighted (see the comparability discussion), HHWT must be used to yield accurate household-level statistics.
NOTE: HHWT has 2 implied decimal places. That is, the last two digits of the eight-digit variable are decimal digits, but there is no actual decimal in the data.
Comparability — Index
Comparability — General
HHWT is available for all samples, but only some samples have weights that differ among households (i.e., many datasets are "flat" samples in which the use of weights is optional).
The samples for which weights must be used to generate representative statistics are:
Bolivia 2012
Brazil 1970, 1980, 1991, 2000, 2010
Cambodia 2004, 2013
Canada 2001, 2011
Colombia 1985, 2005
Ecuador 1974
Egypt 1986, 1996
Ethiopia 1994, 2007
Honduras 2013
India 1983, 1987, 1993, 1999, 2004, 2009
Indonesia 1971, 1976, 1980, 1985, 1990, 1995, 2005
Iran 2006, 2011
Israel 2008
Ivory Coast 1988
Jamaica 2001
Kenya 1969, 1979
Mexico 1995, 2000, 2010, 2015, 2020
Mongolia 1989, 2010
Mozambique 1997, 2017
Myanmar 2014
Nepal 2001
Netherlands 1960, 1971, 2001
Pakistan 1973, 1981
Palestine 1997, 2007, 2017
Panama 1980
Paraguay 2002
Philippines 1990, 2000
Puerto Rico 1990, 2000, 2005, 2010, 2015, 2020
Senegal 2013
Slovak Republic 1991, 2001, 2011
South Africa 1996, 2001, 2007, 2011, 2016
South Sudan 2008
Spain 1981, 1991, 2011
Sudan 2008
Switzerland 2011
Tanzania 1988, 2002, 2012
Thailand 1970, 1980, 1990, 2000
Togo 2010
Uganda 1991
United States 1990, 2000, 2005, 2010, 2015, 2020
Uruguay 2006
Venezuela 1971, 1990
Vietnam 1989, 1999, 2009, 2019
Pre-1950 samples:Canada 1871
Egypt 1848, 1868
Germany 1819 (Mecklenburg)
Norway 1875
United Kingdom 1851 (2%)
Labor force surveys:
Italy 2011-2020
Mexico 2005-2020
Philippines 1997-2019
Spain 2005-2020
For the other samples, a weight was calculated from the sampling fraction. In those samples HHWT may not yield a precise count of the actual population to the extent that the theoretical sampling fraction was imperfect.
NOTE: Egypt 1986 is a recovered sample with missing geographic areas. Weights were constructed based on village and district population totals. Detailed notes about missing areas can be found in the geographic variables for Egypt.
Some samples use fractional weights (to two decimal places), while most use only whole numbers (the first 6 digits of HHWT).
In several samples, at least some very large households were split into individual records. These households may or may not represent group quarters. A household record is written for each of these individuals. Households created as a result of these divisions have household weights set to zero. Relevant records are identified in the group quarters variable (GQ) by code 29 "1-person unit created by splitting large household."
Some pre-1950 samples are complete-count datasets that do not require weights.
The 1871 Canada and 1875 Norway datasets are highly stratified, weighted samples. The 1851 2% United Kingdom sample is a cluster sample of parishes. The 1819 Germany (Mecklenburg) sample has a highly clustered sample design of portions of territories. Users must use PERWT in order to calculate accurate statistics for these samples.
Comparability — Argentina [top]
The 1980 and 1991 samples are weighted; the 1970 and 2001 samples are flat.
Comparability — Armenia [top]
The samples are flat: every record represents 10 households in the population.
Comparability — Austria [top]
The samples are flat: every record represents 10 households in the population.
Comparability — Belarus [top]
The samples are flat: every record represents ten households in the population.
Comparability — Bolivia [top]
The 1976-2001 samples are flat: every record represents 10 households in the population. The 2012 sample has differential weights by department (first geography level).
Comparability — Botswana [top]
The samples are flat: every record represents ten households in the population.
Comparability — Brazil [top]
In 1960, the weight variable was missing from the microdata. The IPUMS weights are therefore theoretical weights based on the census design: 25 percent of households were to receive the long-form questionnaire from which the microdata sample is derived. All persons receive an equal weight corresponding to the overall sample density for the country in 1960.
In all other years, the weight varies among households. In 1970, the household weight is derived from the weight of the first person in the household.
Comparability — Cambodia [top]
The Cambodia 1998, 2008, 2019 samples are flat: every record represents 10 households in the population. In 2004 and 2013, the weight varies across households.
Comparability — Canada [top]
The 2001 and 2011 samples are weighted; the others are flat. The 2001 and 2011 samples use fractional weights (two decimal places).
Comparability — Chile [top]
All samples are flat: every record represents 100 (in 1960) or 10 (in 1970-2017) households.
Comparability — China [top]
The samples are flat: every record represents 100 households in the population.
Comparability — Colombia [top]
The 1985 and 2005 samples are weighted; the others are flat. The 2005 sample uses fractional weights.
Comparability — Costa Rica [top]
All samples are flat: every record represents an equal number of households in the population (16.7 or 10, depending on the year).
Comparability — Cuba [top]
The 2002 and 2012 samples are flat: every record represents 10 households in the population.
Comparability — Côte d'Ivoire [top]
The 1988 sample is weighted; weights are based on the probability of selection by department (first level of administrative geography). The 1998 sample is flat: every record represents 100 persons in the population.
Comparability — Ecuador [top]
The 1974 sample uses fractional weights. The other samples are flat.
Comparability — Egypt [top]
The 1986 sample is weighted and uses fractions. This is a partially recovered data file; many geographic areas of the country are missing in part or in whole. For details about missing areas, see the geography variable documentation for Egypt.
The 1996 sample is weighted and uses fractions. The 2006 sample is flat.
The 1848 and 1868 samples are weighted and uses fractions, which refer to the sample fraction within a specific province.
Comparability — El Salvador [top]
The samples are flat: every record represents 10 households in the population.
Comparability — Ethiopia [top]
The 1984 sample from Ethiopia is not representative of the country-level population. The file is a 1 in 10 sample of enumerated households. However, due to famine and conflict, parts of the country are missing from the sample. Detailed documentation about the nature of the undercount and affected geographic areas is available in a report.
Regions were sampled at different rates in 1994. Use of weights is especially important since Somali and Affar regions were sampled at lower densities.
The sample from 2007 includes records from both the long and short forms. When combined, the total set of records constitutes a flat 10% sample, but few variables are available. The weight applies to long form respondents only (short form respondents have a weight of zero). Use of the weight is essential for most analyses and yields point estimates that correspond closely to published reports for all variables.
Comparability — Fiji [top]
The samples are flat: every record represents 10 households in the population.
Comparability — Finland [top]
The sample is flat: every record represents 20 households in the population.
Comparability — France [top]
The 1962-1999 samples are flat: every record represents an equal number of households in the population. The 2006 and 2011 samples are weighted and use fractions.
Comparability — Germany [top]
All samples are flat: every record represents an equal number of households in the population.
The 1819 Mecklenburg dataset has a highly clustered sample design of portions of territories. The weights are based on Territories in Mecklenburg (TERRDE). NOTE: Because of the highly clustered sample design, the sample weights may not ensure representative results for all types of analyses.
Comparability — Ghana [top]
The samples are flat: every record represents 10 households in the population.
Comparability — Greece [top]
All samples are flat: every record represents an equal number of households in the population.
Comparability — Guatemala [top]
The samples are flat and the weights are defined according to the proportion of the population represented: every record represents 10 households in 1994 and 2002, 18 households in 1973, and 20 households in 1964 and 1981.
Comparability — Guinea [top]
All samples are flat: every record represents 10 households in the population.
Comparability — Honduras [top]
The 2013 sample weights have two components: an adjustment factor for undercount and a flat expansion factor of "10" for sampling.
Comparability — Hungary [top]
All samples are flat: every record represents an equal number of households in the population.
Comparability — Indonesia [top]
The samples for 1971-1995 and 2005 are weighted. The 2000 and 2010 samples are flat: every record represents 20 households in the population.
Comparability — Iran [top]
The samples are weighted and use fractions.
Comparability — Ireland [top]
All samples are flat: each record represents 10 households in the population.
The 1901 and 1911 samples are flat: each record represents one person in the population.
Comparability — Israel [top]
The 1972, 1983, and 1995 samples are flat: every record represents 10 households in the population. The 2008 sample is weighted.
Comparability — Italy [top]
The sample is flat: every record represents 20 households in the population.
The Italy labor force surveys are differentially weighted.
Comparability — Jamaica [top]
The 1982 and 1991 samples are flat; the 2001 sample is weighted.
Comparability — Jordan [top]
The sample is flat: every record represents 10 households in the population.
Comparability — Kenya [top]
The 1969 and 1979 samples are weighted. The 1989, 1999, 2009, and 2019 samples are flat: every record represents 10 or 20 households in the population.
Comparability — Kyrgyzstan [top]
The sample is flat: every record represents 10 households in the population.
Comparability — Laos [top]
The 1995, 2005, and 2015 samples are flat: every record represents 10 households in the population. In 2005, the weighted number of collective households are larger than those in published census results.
Comparability — Malawi [top]
The samples are flat: every record represents 10 households in the population.
Comparability — Malaysia [top]
The samples are flat: every record represents 50 households in the population.
Comparability — Mali [top]
Both samples are flat: every record represents 10 households in the population.
Comparability — Mauritius [top]
All samples are flat: every record represents 10 households in the population.
Comparability — Mexico [top]
The 1995, 2000, 2010, 2015, and 2020 samples are weighted; the others are flat.
The Mexico labor force surveys are differentially weighted. Each of the survey samples include strata and primary sampling units in their corresponding unharmonized source variables.
Comparability — Mongolia [top]
The 1989 and 2010 samples are weighted. The 1989 sample design was highly clustered. All provinces are covered, but within provinces entire districts were included in the sample, while other districts were not sampled at all. We have weighted the data at the province level using published data on age structure, but for some applications the data may not be entirely representative of the population.
The 2000 and 2020 samples are flat: every record represents 10 persons in the population.
Comparability — Morocco [top]
The 1982, 1994, and 2004 samples are flat: every record represents 20 households in the population. The 2014 sample is also flat, but every record represents 10 households in the population.
Comparability — Mozambique [top]
The 1997 and 2017 samples are differentially weighted. The 2007 sample is flat: every record represents 10 households in the population.
Comparability — Myanmar [top]
The 2014 sample is weighted.
Comparability — Nepal [top]
The 2011 sample is flat: every record represents 8.1 households in the population.
The 2001 sample is differentially weighted. The sample weights were constructed by IPUMS in two steps. First, weights were calculated to match published household counts at the district and municipality levels. The household counts included the Central Bureau of Statistics estimates for Wards that could not be enumerated. Second, the initial weights were adjusted to match the marginal distribution of household size within each district, to account for the underrepresentation of large households in the public-use microdata relative to published figures.
Comparability — Netherlands [top]
The samples are weighted and use fractions.
Comparability — Nicaragua [top]
The samples are flat: every record represents 10 households in the population.
Comparability — Pakistan [top]
The 1973 and 1981 samples are weighted; the 1998 sample is not. The 1973 weight is a crude inflator based on province and urban-rural status.
Comparability — Palestine [top]
The Palestine samples are weighted and use fractions.
Comparability — Panama [top]
The 1980 sample is weighted; the others are flat.
Comparability — Paraguay [top]
The 1962, 1972, 1982, and 1992 samples are flat: every record represents 10 or 20 households in the population depending on the sample. The 2002 sample is differentially weighted.
Comparability — Peru [top]
The 1993, 2007, and 2017 samples are flat: every record represents 10 households in the population.
Comparability — Philippines [top]
The 1990 and 2000 samples are weighted; the 1995 sample is flat.
The Philippines labor force surveys are differentially weighted. Currently, household-level weights are only available for the 2001-2006 waves, but IPUMS plans to construct household weights for the remaining waves in the future. Some of the survey samples include strata and primary sampling units in their corresponding unharmonized source variables.
Comparability — Poland [top]
The samples are flat: every record represents approximately 10 households in the population.
Comparability — Portugal [top]
All samples are flat: every record represents 20 households in the population.
Comparability — Puerto Rico [top]
The 1990-2020 samples are weighted; the earlier samples are flat.
Comparability — Romania [top]
The samples are flat: every record represents 10 households in the population.
Comparability — Russia [top]
The samples are flat: every record represents 20 households in the population.
Comparability — Rwanda [top]
The samples are flat: every record represents 10 households in the population.
Comparability — Saint Lucia [top]
Both samples are flat: every record represents 10 households in the population.
Comparability — Senegal [top]
The 1988 and 2002 samples are flat: every record represents 10 households in the population. The 2013 sample is weighted.
Comparability — Sierra Leone [top]
The 2004 and 2015 samples are flat: every record represents 10 households in the population.
Comparability — Slovakia [top]
The 1991, 2001, and 2011 are weighted and use fractions.
Comparability — Slovenia [top]
The sample is flat: every record represents 10 households in the population.
Comparability — South Africa [top]
All samples are weighted and use fractions. The 2007 sample has multiple weights; we used the adjusted weight.
In 1996, collective dwellings did not receive a weight. We have applied the nominal average sample weight to these cases: they all get a weight of "10" in the IPUMS.
Comparability — South Sudan [top]
The sample is weighted and uses fractions.
Comparability — Spain [top]
The 1981 and 1991 samples use fractional weights. The 2001 sample is flat.
Several provinces in 1981 were sampled at roughly 5 times the density of other provinces, making the use of weights particularly critical in that year. The over-sampled provinces are Alava, Guipuzcoa, Navarra, and Vizcaya.
The Spain labor force surveys are differentially weighted.
Comparability — Sudan [top]
The sample is weighted and uses fractions.
Comparability — Suriname [top]
The samples are flat: every record represents 10 households in the population.
Comparability — Switzerland [top]
The 1970-2000 samples are flat: every record represents 20 persons in the population; the 2011 sample is weighted.
Comparability — Tanzania [top]
All Tanzania samples are weighted and use fractions.
Comparability — Thailand [top]
All samples are weighted.
Comparability — Togo [top]
The 1960 and 1970 samples are flat: every record represents 10 households in 1960 and 100 households in 1970. The 1960 sample includes only urban population.
The 2010 sample is differentially weighted, according to rural or urban place of residence.
Comparability — Trinidad and Tobago [top]
The samples are flat: every record represents 10 households in the population.
Comparability — Turkey [top]
The samples are flat: every record represents 20 households in the population.
Comparability — Uganda [top]
The 1991 sample is weighted. The 2002 and 2014 samples are flat: every record represents 10 households in the population.
Comparability — United Kingdom [top]
The samples are flat: every record represents an equal number of households in the population.
The Great Britain 1851 2% data are a cluster sample of parishes. HHWT is based on sampling density at the county level. Note, the sample includes no data for three counties: Flintshire (North Wales) and Selkirkshire and Kinrosshire (Southern Scotland).
Comparability — United States [top]
The 1990-2020 samples are weighted; the earlier samples are flat.
Alternative weights, such as replicate weights or sample line weights, are available in the source variables for the 2010 sample.
Comparability — Uruguay [top]
The 2006 sample is weighted. The 1963-1996 samples are flat, with each record representing 10 households in the population.
Comparability — Venezuela [top]
The 1971 and 1990 samples are weighted; the 1981 and 2001 samples are flat.
Comparability — Vietnam [top]
All samples are weighted.
Universe
- All households
Availability
- Argentina: 1970, 1980, 1991, 2001, 2010
- Armenia: 2001, 2011
- Austria: 1971, 1981, 1991, 2001, 2011
- Bangladesh: 1991, 2001, 2011
- Belarus: 1999, 2009
- Benin: 1979, 1992, 2002, 2013
- Bolivia: 1976, 1992, 2001, 2012
- Botswana: 1981, 1991, 2001, 2011
- Brazil: 1960, 1970, 1980, 1991, 2000, 2010
- Burkina Faso: 1985, 1996, 2006
- Cambodia: 1998, 2004, 2008, 2013, 2019
- Cameroon: 1976, 1987, 2005
- Canada: 1852, 1871, 1881, 1891, 1901, 1911, 1971, 1981, 1991, 2001, 2011
- Chile: 1960, 1970, 1982, 1992, 2002, 2017
- China: 1982, 1990, 2000
- Colombia: 1964, 1973, 1985, 1993, 2005
- Costa Rica: 1963, 1973, 1984, 2000, 2011
- Cuba: 2002, 2012
- Côte d'Ivoire: 1988, 1998
- Denmark: 1787, 1801, 1845, 1880, 1885
- Dominican Republic: 1960, 1970, 1981, 2002, 2010
- Ecuador: 1962, 1974, 1982, 1990, 2001, 2010
- Egypt: 1848, 1868, 1986, 1996, 2006
- El Salvador: 1992, 2007
- Ethiopia: 1984, 1994, 2007
- Fiji: 1966, 1976, 1986, 1996, 2007, 2014
- Finland: 2010
- France: 1962, 1968, 1975, 1982, 1990, 1999, 2006, 2011
- Germany: 1819, 1970, 1971, 1981, 1987
- Ghana: 1984, 2000, 2010
- Greece: 1971, 1981, 1991, 2001, 2011
- Guatemala: 1964, 1973, 1981, 1994, 2002
- Guinea: 1983, 1996, 2014
- Haiti: 1971, 1982, 2003
- Honduras: 1961, 1974, 1988, 2001, 2013
- Hungary: 1970, 1980, 1990, 2001, 2011
- Iceland: 1703, 1729, 1801, 1901, 1910
- India: 1983, 1987, 1993, 1999, 2004, 2009
- Indonesia: 1971, 1976, 1980, 1985, 1990, 1995, 2000, 2005, 2010
- Iran: 2006, 2011
- Iraq: 1997
- Ireland: 1901, 1911, 1971, 1979, 1981, 1986, 1991, 1996, 2002, 2006, 2011, 2016
- Israel: 1972, 1983, 1995, 2008
- Italy: 2001, 2011, 2011Q1, 2012Q1, 2013Q1, 2014Q1, 2015Q1, 2016Q1, 2017Q1, 2018Q1, 2019Q1, 2020Q1
- Jamaica: 1982, 1991, 2001
- Jordan: 2004
- Kenya: 1969, 1979, 1989, 1999, 2009, 2019
- Kyrgyzstan: 1999, 2009
- Laos: 1995, 2005, 2015
- Lesotho: 1996, 2006
- Liberia: 1974, 2008
- Malawi: 1987, 1998, 2008, 2018
- Malaysia: 1970, 1980, 1991, 2000
- Mali: 1987, 1998, 2009
- Mauritius: 1990, 2000, 2011
- Mexico: 1960, 1970, 1990, 1995, 2000, 2005, 2005Q1, 2005Q2, 2005Q3, 2005Q4, 2006Q1, 2006Q2, 2006Q3, 2006Q4, 2007Q1, 2007Q2, 2007Q3, 2007Q4, 2008Q1, 2008Q2, 2008Q3, 2008Q4, 2009Q1, 2009Q2, 2009Q3, 2009Q4, 2010, 2010Q1, 2010Q2, 2010Q3, 2010Q4, 2011Q1, 2011Q2, 2011Q3, 2011Q4, 2012Q1, 2012Q2, 2012Q3, 2012Q4, 2013Q1, 2013Q2, 2013Q3, 2013Q4, 2014Q1, 2014Q2, 2014Q3, 2014Q4, 2015, 2015Q1, 2015Q2, 2015Q3, 2015Q4, 2016Q1, 2016Q2, 2016Q3, 2016Q4, 2017Q1, 2017Q2, 2017Q3, 2017Q4, 2018Q1, 2018Q2, 2018Q3, 2018Q4, 2019Q1, 2019Q2, 2019Q3, 2019Q4, 2020, 2020Q1, 2020Q3
- Mongolia: 1989, 2000, 2010, 2020
- Morocco: 1982, 1994, 2004, 2014
- Mozambique: 1997, 2007, 2017
- Myanmar: 2014
- Nepal: 2001, 2011
- Netherlands: 1960, 1971, 2001, 2011
- Nicaragua: 1971, 1995, 2005
- Nigeria: 2006, 2007, 2008, 2009, 2010
- Norway: 1801, 1865, 1875, 1900, 1910
- Pakistan: 1973, 1981, 1998
- Palestine: 1997, 2007, 2017
- Panama: 1960, 1970, 1980, 1990, 2000, 2010
- Papua New Guinea: 1980, 1990, 2000
- Paraguay: 1962, 1972, 1982, 1992, 2002
- Peru: 1993, 2007, 2017
- Philippines: 1990, 1995, 2000, 2001Q1, 2001Q2, 2001Q3, 2001Q4, 2002Q1, 2002Q2, 2002Q3, 2002Q4, 2003Q1, 2003Q2, 2003Q3, 2003Q4, 2004Q1, 2004Q2, 2004Q3, 2004Q4, 2005Q1, 2005Q2, 2005Q3, 2005Q4, 2006Q1, 2006Q2, 2006Q3, 2006Q4, 2010
- Poland: 1978, 1988, 2002, 2011
- Portugal: 1981, 1991, 2001, 2011
- Puerto Rico: 1970, 1980, 1990, 2000, 2005, 2010, 2015, 2020
- Romania: 1977, 1992, 2002, 2011
- Russia: 2002, 2010
- Rwanda: 1991, 2002, 2012
- Saint Lucia: 1980, 1991
- Senegal: 1988, 2002, 2013
- Sierra Leone: 2004, 2015
- Slovakia: 1991, 2001, 2011
- Slovenia: 2002
- South Africa: 1996, 2001, 2007, 2011, 2016
- South Sudan: 2008
- Spain: 1981, 1991, 2001, 2005Q1, 2005Q2, 2005Q3, 2005Q4, 2006Q1, 2006Q2, 2006Q3, 2006Q4, 2007Q1, 2007Q2, 2007Q3, 2007Q4, 2008Q1, 2008Q2, 2008Q3, 2008Q4, 2009Q1, 2009Q2, 2009Q3, 2009Q4, 2010Q1, 2010Q2, 2010Q3, 2010Q4, 2011, 2011Q1, 2011Q2, 2011Q3, 2011Q4, 2012Q1, 2012Q2, 2012Q3, 2012Q4, 2013Q1, 2013Q2, 2013Q3, 2013Q4, 2014Q1, 2014Q2, 2014Q3, 2014Q4, 2015Q1, 2015Q2, 2015Q3, 2015Q4, 2016Q1, 2016Q2, 2016Q3, 2016Q4, 2017Q1, 2017Q2, 2017Q3, 2017Q4, 2018Q1, 2018Q2, 2018Q3, 2018Q4, 2019Q1, 2019Q2, 2019Q3, 2019Q4, 2020Q1, 2020Q2, 2020Q3, 2020Q4
- Sudan: 2008
- Suriname: 2004, 2012
- Sweden: 1880, 1890, 1900, 1910
- Switzerland: 1970, 1980, 1990, 2000, 2011
- Tanzania: 1988, 2002, 2012
- Thailand: 1970, 1980, 1990, 2000
- Togo: 1960, 1970, 2010
- Trinidad and Tobago: 1970, 1980, 1990, 2000, 2011
- Turkey: 1985, 1990, 2000
- Uganda: 1991, 2002, 2014
- Ukraine: 2001
- United Kingdom: 1851a, 1851b, 1851c, 1861a, 1861b, 1871b, 1881a, 1881b, 1891a, 1891b, 1901a, 1901b, 1911, 1961, 1971, 1991, 2001
- United States: 1850a, 1850b, 1860, 1870, 1880a, 1880b, 1900, 1910, 1960, 1970, 1980, 1990, 2000, 2005, 2010, 2015, 2020
- Uruguay: 1963, 1975, 1985, 1996, 2006, 2011
- Venezuela: 1971, 1981, 1990, 2001
- Vietnam: 1989, 1999, 2009, 2019
- Zambia: 1990, 2000, 2010
- Zimbabwe: 2012

Loading...